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3.6.1 Explaining the magic of Greeks computations

It is interesting to note that the formulas (3.72–3.81) for the Greeks are simpler
than expected. For example, the Delta of a call option is defined as

Δ(C) =
∂C

∂S
.

Differentiating the Black–Scholes formula (3.59) with respect to S, we obtain

Δ(C) = e−q(T−t)N(d1)

+ Se−q(T−t) ∂

∂S
(N(d1))−Ke−r(T−t) ∂

∂S
(N(d2)) , (3.83)

since both d1 and d2 are functions of S; cf. (3.61) and (3.62).
However, we know from (3.72) that

Δ(C) = e−q(T−t)N(d1). (3.84)

To understand how (3.83) reduces to (3.84), we apply chain rule and obtain that

∂

∂S
(N(d1)) = N ′(d1)

∂d1

∂S
; (3.85)

∂

∂S
(N(d2)) = N ′(d2)

∂d2

∂S
. (3.86)

Then, using (3.85) and (3.86), we can write (3.83) as

Δ(C) = e−q(T−t)N(d1)

+Se−q(T−t) N ′(d1)
∂d1

∂S
−Ke−r(T−t) N ′(d2)

∂d2

∂S
. (3.87)

Note that the formulas (3.61) and (3.62) for d1 and d2 can be written as

d1 =
ln

(
S
K

)
+ (r − q)(T − t)

σ
√

T − t
+

σ
√

T − t

2
; (3.88)

d2 = d1 − σ
√

T − t =
ln

(
S
K

)
+ (r − q)(T − t)

σ
√

T − t
− σ

√
T − t

2
. (3.89)

The following result explains why (3.87) reduces to (3.84):

Lemma 3.15. Let d1 and d2 be given by (3.88) and (3.89). Then

Se−q(T−t) N ′(d1) = Ke−r(T−t) N ′(d2). (3.90)

Proof. Recall that N(z) is the cumulative distribution of the standard normal vari-
able, i.e.,

N(z) =
1√
2π

∫ z

−∞
e−

x2

2 dx.
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From Lemma 2.3, we find that N ′(z) = 1√
2π

e−
z2

2 . Then,

N ′(d1) =
1√
2π

e
−d2

1
2 ; (3.91)

N ′(d2) =
1√
2π

e
−d2

2
2 . (3.92)

Therefore, in order to prove (3.90), it is enough to show that the following formula
holds true:

Se−q(T−t) e−
d2
1
2 = Ke−r(T−t) e−

d2
2
2 ,

which can also be written as

Se(r−q)(T−t)

K
= exp

(
d2

1 − d2
2

2

)
. (3.93)

(Recall the notation exp(x) = ex.)
From (3.88) and (3.89), it is easy to see that

d2
1 − d2

2 = d2
1 − (d1 − σ

√
T − t)2 = 2d1σ

√
T − t − σ2(T − t)

= 2

(
ln

(
S

K

)
+ (r − q)(T − t)

)

= 2 ln

(
Se(r−q)(T−t)

K

)
. (3.94)

Formula (3.93) follows immediately from (3.94).

We return our attention to proving formula (3.84) for Δ(C).
From (3.88) and (3.89), we find that

∂d1

∂S
=

∂d2

∂S
=

1

σS
√

T − t
. (3.95)

Using (3.95) and Lemma 3.15, we conclude that formula (3.87) becomes

Δ(C) = e−q(T−t)N(d1) + Se−q(T−t)N ′(d1)
∂d1

∂S
− Ke−r(T−t)N ′(d2)

∂d2

∂S

= e−q(T−t)N(d1) + Se−q(T−t) N ′(d1)

(
∂d1

∂S
− ∂d2

∂S

)

= e−q(T−t)N(d1).

Formula (3.84) is therefore proven.

The simplified formulas (3.76), (3.78), and (3.80) for the vega, Θ, and ρ of a
European call option6 are obtained similarly using Lemma 3.15.

6Note that the formulas (3.77), (3.79), and (3.81) for the vega, Θ, and ρ of a European
put option can be obtained from (3.76), (3.78), and (3.80) by using the Put–Call parity.
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The formula for vega(C):

We differentiate the Black–Scholes formula (3.59) with respect to σ. Following the
same steps as in the computation for the Delta of the call option, i.e., using chain
rule and Lemma 2.3, we obtain that

vega(C) =
∂C

∂σ
= Se−q(T−t) N ′(d1)

∂d1

∂σ
− Ke−r(T−t) N ′(d2)

∂d2

∂σ
.

Using the result of Lemma 3.15, we conclude that

vega(C) = Se−q(T−t) N ′(d1)

(
∂d1

∂σ
− ∂d2

∂σ

)
.

Since d2 = d1 − σ
√

T − t, we find that d1 − d2 = σ
√

T − t and thus

∂d1

∂σ
− ∂d2

∂σ
=
√

T − t.

Then, using the fact that N ′(d1) = 1√
2π

e
−d2

1
2 , see (3.91), we conclude that

vega(C) =
1√
2π

Se−q(T−t) e−
d2
1
2

√
T − t,

which is the same as formula (3.76).

The formula for Θ(C):

We differentiate the Black–Scholes formula (3.59) with respect to t. Using chain
rule and Lemma 2.3 we obtain that

Θ(C) = Se−q(T−t) N ′(d1)
∂d1

∂t
+ qSe−q(T−t)N(d1)

− Ke−r(T−t) N ′(d2)
∂d2

∂t
− rKe−r(T−t)N(d2).

Using the result of Lemma 3.15, we conclude that

Θ(C) = Se−q(T−t) N ′(d1)

(
∂d1

∂t
− ∂d2

∂t

)

+ qSe−q(T−t)N(d1) − rKe−r(T−t)N(d2).

Since d1 − d2 = σ
√

T − t, we find that

∂d1

∂t
− ∂d2

∂t
= − σ

2
√

T − t
.

Since N ′(d1) = 1√
2π

e
−d2

1
2 , cf. (3.91), we conclude that

Θ(C) = − 1√
2π

Se−q(T−t) e−
d2
1
2

σ

2
√

T − t

+ qSe−q(T−t)N(d1) − rKe−r(T−t)N(d2),
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which is the same as formula (3.78).

The formula for ρ(C):

We differentiate the Black–Scholes formula (3.59) with respect to r. Using Chain
Rule and Lemma 2.3 we obtain that

ρ(C) = Se−q(T−t)N ′(d1)
∂d1

∂r
−Ke−r(T−t)N ′(d2)

∂d2

∂r
+ K(T − t)e−r(T−t)N(d2).

Using Lemma 3.15, we find that

ρ(C) = Se−q(T−t) N ′(d1)

(
∂d1

∂r
− ∂d2

∂r

)
+ K(T − t)e−r(T−t)N(d2).

Since d1 − d2 = σ
√

T − t, we find that

∂d1

∂r
=

∂d2

∂r
,

and therefore,
ρ(C) = K(T − t)e−r(T−t)N(d2),

which is the same as formula (3.80).

3.7 Implied volatility

The only parameter needed in the Black–Scholes formulas (3.59–3.62) which is not
directly observable in the markets is the volatility σ of the underlying asset. The
risk free rate r and the continuous dividend yield q of the asset can be estimated
from market data; the maturity date T and the strike K of the option, as well as
the spot price S of the underlying asset are known when a price for the option is
quoted.

Definition 3.7. The implied volatility σimp is the value of the volatility parameter
σ that makes the Black–Scholes value of the option equal to the traded price of the
option.

Denote by CBS(S, K, T, σ, r, q) the Black–Scholes value of a call option with
strike K and maturity T on an underlying asset with spot price S paying dividends
continuously at the rate q, if interest rates are constant and equal to r. Let C be
the market price of a call with parameters S, K, T , r, and q, the implied volatility
σimp corresponding to the price C is, by definition, the solution to

CBS(S, K, T, σimp, r, q) = C. (3.96)

The implied volatility can also be derived from the market price of a put option
price P by solving

PBS(S, K, T, σimp, r, q) = P, (3.97)


